Comparison principle for second order elliptic operators and applications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a factorization of second order elliptic operators and applications

We show that given a nonvanishing particular solution of the equation (div p grad+q)u = 0, (1) the corresponding differential operator can be factorized into a product of two first order operators. The factorization allows us to reduce the equation (1) to a first order equation which in a two-dimensional case is the Vekua equation of a special form. Under quite general conditions on the coeffic...

متن کامل

Eigenvalue Multiplicities for Second Order Elliptic Operators on Networks Joachim

We present some general bounds for the algebraic and geometric multiplicity of eigenvalues of second order elliptic operators on finite networks under continuity and weighted Kirchhoff flow conditions at the vertices. In particular the algebraic multiplicity of an eigenvalue is shown to be strictly bounded from above by the number of vertices if there are no eigenfunctions vanishing in all node...

متن کامل

About the mass of certain second order elliptic operators

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3 and let f ∈ C∞(M), such that the operator Pf := ∆g + f is positive. If g is flat near some point p and f vanishes around p, we can define the mass of Pf as the constant term in the expansion of the Green function of Pf at p. In this paper, we establish many results on the mass of such operators. In particular, if f := n−2 4(n−1) sg, ...

متن کامل

Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators

We characterize the validity of the Maximum Principle in bounded domains for fully nonlinear degenerate elliptic operators in terms of the sign of a suitably defined generalized principal eigenvalue. Here, the maximum principle refers to the property of non-positivity of viscosity subsolutions of the Dirichlet problem. The new notion of generalized principal eigenvalue that we introduce here al...

متن کامل

Lagrange Multipliers for Higher Order Elliptic Operators

In this paper, the Babuška’s theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions. Mathematics Subject Classification. 41A10, 41A17, 65N15, 65N30. Received: April 5, 2004.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2006

ISSN: 0294-1449

DOI: 10.1016/j.anihpc.2005.02.005